SIOS SANless clusters

SIOS SANless clusters High-availability Machine Learning monitoring

  • Home
  • Products
    • SIOS DataKeeper for Windows
    • SIOS Protection Suite for Linux
  • News and Events
  • Clustering Simplified
  • Success Stories
  • Contact Us
  • English
  • 中文 (中国)
  • 中文 (台灣)
  • 한국어
  • Bahasa Indonesia
  • ไทย

Archives for February 2017

Understanding The Emerging field of AIOps – Part II

February 23, 2017 by Margaret Hoagland 1 Comment

This is the second post in a two-part series highlighting how AIOps is changing IT performance optimization. Part 1 explained the basic principles of AIOps. The original text of this series appeared in an article on Information Management.  Here we look at the business requirements driving the trend to AIOps.

Why do businesses need AIOps?

IT pros move more of their business-critical applications into virtualized environments. As a result, finding the root cause of application performance issues is more complicated than ever.  IT managers have to find problems in a complex web of VM applications, storage devices, network devices and services. These components that are connected in ways IT can’t always understand.

Often, the components a VMware or other virtual environment are interdependent and intertwined. When an IT manager moves a workload or makes a change to one component, they cause problems in several other components without their knowledge. If the components are in different so-called silos (network, infrastructure, application, storage, etc.), IT pros have even more trouble figuring out the actual cause of the problem.

Too Many Tools Required to Find Root Causes of Performance Issues

AIOPs Survey
SIOS AIOPS Survey

The process of correlating IT performance issues to its root cause is  difficult, if not impossible for IT leaders.  According to a recent SIOS report, 78 percent of IT professionals are using multiple tools to identify the cause of application performance issues in VMware. For example, they are using tools such as application monitoring, reporting and infrastructure analytics.

Often, when faced with an issue, IT assembles a team with representatives from each IT silo or area of expertise. Each team member uses his or her own diagnostic tools and looks at the problem their own silo-specific perspective. Next, the team members compare the results of their individual analyses identify common elements. Frequently, this process is highly manual. They look at changes in infrastructure that show up in several analyses in the same time frame. As a result, IT departments are wasting more and more of their budget on manual work and inaccurate trial-and-error inefficiencies.

To solve this problem and reduce wasted time, they are using an AIOPs approach. AIOps applies artificial intelligence (i.e., machine learning, deep learning) to automate problem-solving. The AIOPs trend is an important shift away from traditional threshold-based approaches that measure individual qualities (CPU utilization, latency, etc.) to a more holistic data-driven approach. Therefore, IT managers are using analytics tools to analyze data across the infrastructure silos in real-time. They are using advanced deep learning and machine learning analytics tools that learn the patterns of behavior between interdependent components over time.  As a result, they can automatically identify behaviors between components that may indicate a problem. More importantly, they automatically recommend the specific steps to resolve problems.

What’s Next for AIOps?

Virtual IT environments are creating an enormous volume of data and an unprecedented level of complexity. As a result, IT managers cannot manage these environments effectively with traditional, manual methods. Over the next few years, the IT profession will rapidly move from the traditional computer science approach to a modern “data science” AIOPs approach. For IT teams, this means embracing machine learning-based analytics solutions, and understanding how to use it to solve problems efficiently and effectively. Finally, executives need to work with their IT departments to identify to right AIOps platform for their business.

Read Part 1

Filed Under: Blog posts, News and Events Tagged With: #AIOps, Machine Learning, Sergey Razin, VMware

What You Need to Know About the Emerging field of AIOps – Part 1

February 16, 2017 by sios2017 Leave a Comment

This is the first post in a two-part series. We are highlighting how AIOps is changing IT performance optimization. The original text of this series appeared in an article on Information Management.

During the next two years, companies are set to spend $31.3 billion on cognitive systems tools. Today, companies are using tools based on these technologies (i.e., data analytics and machine learning) to solve problems in a wide range of areas. For example, companies are using artificial intelligence (AI)-powered customer service bots and trucking routes that data scientist design. Ironically, information technology (IT) departments have not yet fully leveraged the power of machine-learning based analytics — IT.

Survey Shows More Critical Apps in VMware

HoweAIOPs Surveyver, that is changing because IT environments are becoming increasingly complex. They are moving from physical servers to virtual environments. According to a recent study from SIOS Technology, 81 percent of IT teams are running business-critical applications in VMware environments.

Virtual environments are made up of components, such as VMs, applications, storage and network that are highly interrelated and constantly changing. To manage and optimize these environments, IT managers have to analyze an enormous volume of data. They learn the patterns of behavior between component. This lets them accurately correlate application service issues to the root cause of the problem in the virtual environment.  As a result, a new field has emerged – AIOps.

What is AIOps?

AIOps (algorithmic IT operations platforms) is a new term that Gartner uses to describe the next phase of IT operations analytics. These platforms use machine learning and deep learning technology to automate the process of finding performance issues in IT operations.

Right now, Gartner estimates only five percent of businesses have an AIOps platform in place. However, more businesses will adopt these platform during the next two years, bringing that number to 25 percent. Importantly, AIOps replaces human intelligence with machine intelligence. It deciphers interactions within virtual IT environments. Consequently, they can uncover infrastructure issues, correlate them to application operations problems and recommend solutions.

AIOps platforms use machine learning to understand how these environments behave over time to identify abnormal behavior. Furthermore, IT can even use AIOps platforms to find and stop potential threats before they become application performance issues.

Filed Under: Blog posts, News and Events Tagged With: #AIOps, IT operations analytics, root cause analysis, VMware performance

Roadblocks to Optimizing Application Performance in VMware Environments – Part II

February 6, 2017 by sios2017 Leave a Comment

This is the second blog post in a two-part series examining challenges IT teams face in optimizing application performance and other issues in VMware environments. The original text of this series appeared in an article on Data Informed.  

In part one of this series, we uncovered that IT teams are currently using multiple tools to understand application performance issues in VMware. Read on to learn about the other challenges IT teams are facing in virtual environments

Application Performance Issues Are Eating Away at Time and Resources

While IT professionals are consulting their VMware environment application monitoring tools, critical hours are ticking by. For smaller businesses that have limited IT staff, this can cause considerable delays in day-to-day operations. IT teams cannot afford to waste time chasing false positives or focusing their energy on areas of the environment that are not truly the root cause of their application performance issue. Additionally, many IT teams are inundated by alerts from their VMware environment monitoring tools, making it difficult to pinpoint which alerts are meaningless and which are worth diagnosing to solve a potential application performance issue.Application Performance Labor Hours

These interruptions are significant, considering that our recent survey found more than half of IT professionals are facing applications performance issues every month. Additionally, 44 percent indicated that it takes them more than three hours to resolve application performance issues as they arise. Overall, it’s clear that IT teams are frequently facing issues in VMware environments, and they are wasting critical manpower and resources solving these issues.

The Causes of Application Performance Issues Remains a Mystery.

Despite the wide variety of tools available and the volume of time spent solving business-critical application performance issues, IT professionals remain uncertain they can attack these problems head-on. Of the IT professionals surveyed, only 20 percent believe the strategies they implement to resolve application performance issues are 100 percent accurate the first time. Even more alarming, seven percent would characterize their application performance issue resolutions as an “educated guess.” And across the board, it is rare for IT teams to implement a perfect solution to a performance issue– they frequently require a level of adjustment or even a complete rework.

What’s Next?

This trend towards moving business-critical data off of physical servers and onto virtual environments will continue for the foreseeable future, and the relationships between VM applications, network devices, storage devices and services will only grow more complex. Many CIOs are turning to machine learning solutions to help them better understand their infrastructure and learn to optimize the relationships that exists between the different IT disciplines. As a result, the core approach used by IT professionals are changing from a traditional computer science approach to a data science-centric approach. We’ve also seen the rise of “AIOps” or algorithmic IT operations platforms in the last year. A term coined by Gartner to describe machine learning applications in IT, Gartner estimates only five percent of businesses currently have AIOps platforms in place. However, that number is expected to mushroom to 25 percent in the next two years as IT becomes increasingly complex and difficult to manage.

Read Roadblocks to Optimizing Application Performance in VMware Environments part one

Filed Under: Blog posts, News and Events

Recent Posts

  • Do I Even Need High Availability software in the Cloud?
  • Should I Still Use Zabbix In AWS?
  • How To Choose A Cloud When You Need High Availability
  • How To Clone Availability In The Cloud With Better Outcomes
  • New Product Release: SIOS Protection Suite for Linux 9.5.1

Most Popular Posts

Maximise replication performance for Linux Clustering with Fusion-io
Failover Clustering with VMware High Availability
create A 2-Node MySQL Cluster Without Shared Storage
create A 2-Node MySQL Cluster Without Shared Storage
SAP for High Availability Solutions For Linux
Bandwidth To Support Real-Time Replication
The Availability Equation – High Availability Solutions.jpg
Choosing Platforms To Replicate Data - Host-Based Or Storage-Based?
Guide To Connect To An iSCSI Target Using Open-iSCSI Initiator Software
Best Practices to Eliminate SPoF In Cluster Architecture
Step-By-Step How To Configure A Linux Failover Cluster In Microsoft Azure IaaS Without Shared Storage azure sanless
Take Action Before SQL Server 20082008 R2 Support Expires
How To Cluster MaxDB On Windows In The Cloud

Join Our Mailing List

Copyright © 2021 · Enterprise Pro Theme on Genesis Framework · WordPress · Log in