SIOS SANless clusters

SIOS SANless clusters High-availability Machine Learning monitoring

  • Home
  • Products
    • SIOS DataKeeper for Windows
    • SIOS Protection Suite for Linux
  • News and Events
  • Clustering Simplified
  • Success Stories
  • Contact Us
  • English
  • 中文 (中国)
  • 中文 (台灣)
  • 한국어
  • Bahasa Indonesia
  • ไทย

Subscribe to Data Informed The IT Shift from Computer Science to Data Science

November 13, 2017 by Jason Aw Leave a Comment

You may think that the words “artificial intelligence” or “machine learning” sound like trendy buzzwords. In reality, much of the hype about this technology is true. Unlike past periods of excitement over artificial intelligence, today’s interest is no longer an academic exercise. Now, IT has a real-world need for faster solutions to problems that are too complex for humans alone. This includes identifying the root causes of performance issues in virtual infrastructures.

Today, almost every large enterprise has virtualized part, or all, of their data centers. With virtualization, IT teams gain access to a huge variety and volume of real-time machine data they want to use to understand and solve the issues in their IT operations environments. However, the complexity of managing virtual IT environments is stressing out traditional IT departments. As a result, IT pros are discovering that the solution lies in the data and in the artificial intelligence-based tools that can leverage it.

Data Science to the Rescue

As worldwide digital data levels continue to climb, companies are working to find the business value in their data, and to adapt their computer science strategies to the evolving data science market. Legacy management and monitoring tools used the same approach they used for physical server environments — that is, by looking at discrete silos (network, storage, infrastructure, application). They used multiple manually-set thresholds to focus on individual metrics — CPU utilization, memory utilization, network latency, etc., within each silo.

This threshold-based approach originated in a relatively static, well-understood physical server environment which has proven ineffective in handling the complexity of today’s virtual environments. Unlike their counterparts in physical server environments, components in virtual environments share host resources, creating complex, highly interdependent relationships between them. They are also highly dynamic, enabling IT to continually create and move workloads across VMs. IT pros can no longer make informed decisions using manual computer science approaches of yesterday and analyzing alerts from a single silo at a time. This is why companies are turning to “data science” approach that leverages sophisticated AI disciplines of machine learning and deep learning to get a holistic, automated solution to eliminate the time-consuming, manual process of problem-solving performance issues and optimizing virtual environments.

Machine Learning Analytics Tools Provide the Answers

Rather than monitoring individual metrics as threshold-based tools do, advanced machine learning-based solutions learn the complex behavior of interrelated components as they change over time. They can consider multiple metrics of related components simultaneously. As a result, they deliver much more precise, accurate information about virtual environments than either primitive machine learning tools or traditional threshold-based tools. Instead of creating “alert storms”, they identify the meaningful incidents associated with abnormal behavior at a specific time of day, week, month and year. And because machine learning is central to the design, there is no manual configuration required. Advanced machine learning solutions, can be up and running in minutes and learning behaviors immediately. As a result, this shift to a data-centric, behavior-based approach has major implications that significantly empower IT professionals. IT pros will always need domain expertise in computer science, but what analytical skills will IT need to become effective in this new AI-driven world?

Instead of spending their days reacting to and reworking application performance issues, IT will shift their focus from diagnosing problems to proactively predicting and avoiding them in the first place. Freed of the need to over-provision to ensure performance and reliability, they will be able to look for ways to optimize efficiency and spend their time focusing on the larger goals at hand. This allows IT to provide true business value, and work on projects that drive company objectives forward. Generally, that kind of value gives IT an important voice in senior management, bringing them into the decision making process and closing the gap between IT and operations. And as IT pros understanding and use of machine learning-based analytics tools advance, they will be on the forefront of building the foundation for automation and the future of the self-driving data center.

Jim’s Bio:

Jim Shocrylas is the Director of Product Management at SIOS.  Jim has more than 20 years in the IT industry, most recently as Portfolio Manager for EMC’s Emerging Technologies Division.

Filed Under: News and Events, News posts, Press Releases Tagged With: #AIOps, analytics, Artificial Intelligence, Machine Learning

Part 2- AI: It’s All About the Data: The Shift from Computer Science to Data Science

April 14, 2017 by sios2017 Leave a Comment

This is the second post in a two-part series. Part One is available here. We are highlighting the shifting roles of IT with the emergence of machine learning based IT analytics tools.

Machine Learning Provides the Answers

The newest data science approach to managing and optimizing virtual infrastructures applies the AI discipline of machine learning (ML).

Rather than monitoring individual components in the traditional computer science way, ML tools analyze the behavior of interrelated components. They track the normal patterns of these complex behaviors as they change over time. Machine learning-based analytics tools automatically identify the root causes of performance issues and recommend the steps needed to fix them.

This shift to a data-centric, behavior-based approach has major implications that significantly empower IT professionals. IT pros will always need domain expertise in computer science. But what analytical skills will IT need to become effective in this new AI-driven world?

Unlike earlier analytics tools were general purpose or provided relatively low-level primitives or APIs, leaving IT to determine how to apply them for specific purposes. Early tools were largely impractical because they had limited applicability. Moreover, IT pros using them had to have a deep analytical background. New tools are much different. They allow IT pros to leapfrog ahead -to use advanced data science approaches without specialized training. Artificial IntelligenceThey automatically deliver fast, accurate solutions to complex problems like root cause analysis, rightsizing, or capacity planning.

First, IT will shift their emphasis from diagnosing problems to avoiding them in the first place. Next, freed of the need to over-provision to ensure performance and reliability, they will look for ways to optimize efficiency. Finally, they will use ML tools to implement strategies to evolve and scale their environments to support their business’s operations.

And as IT pro’s mature their understanding and use of machine learning-based analytics tools, they will be on the forefront of building the foundation for automation and the future of the self-driving data center.

Read Part 1

Save

Save

Filed Under: Blog posts Tagged With: Artificial Intelligence, Machine Learning

Part 1: AI is All About the Data: The Shift from Computer Science to Data Science

April 10, 2017 by sios2017 Leave a Comment

This is the first post in a two-part series. Part 2 is available here. We are highlighting the shifting roles of IT as artificial intelligence (AI) driven data science evolves.

You may think that the words “artificial intelligence” or “machine learning” sound like trendy buzzwords. In reality, much of the hype about this technology is true. Unlike past periods of excitement over artificial intelligence, today’s interest is no longer an academic exercise. Now, IT has a real-world need for faster solutions to problems that are too complex for humans alone. With virtualization, IT teams gain access to a huge variety and volume of real-time machine data. They want to use to understand and solve the issues in their IT operations environments. What’s more, businesses are seeing the value in dedicating budget and resources to leverage artificial intelligence, specifically machine learning, and deep learning. They are using this powerful technology to analyze this data to increase efficiency and performance.

Data Science to the Rescue Artificial Intelligence

The complexity of managing virtual IT environments is stressing out traditional IT departments. However, IT pros are discovering that the solution lies in the data and in the artificial intelligence-based tools that can leverage it. Most are in the process of understanding how powerful data is in making decisions about configuring, optimizing, and troubleshooting virtual environments. Early stage virtualization environments were monitored and managed in the same way physical server environments were. That is, IT pros operated in discrete silos (network, storage, infrastructure, application). They used multiple threshold- based tools to monitor and manage them focusing on individual metrics – CPU utilization, memory utilization, network latency, etc. When a metric exceeds a preset threshold, these tools create alerts – often thousands of alerts for a single issue.

If you compare a computer science approach to a data science (AI) approach, several observations become clear. IT based the traditional approach on computer science principles that they have used for the last 20 years. This threshold-based approach originated in relatively static, low-volume physical server environments. IT staff analyze individual alerts to determine what caused the problem, how critical it is, and how to fix it. However, unlike physical server environments, components in virtual environments are highly interdependent and constantly changing. Given the enormous growth of virtualized systems, IT pros cannot make informed decisions by analyzing alerts from a single silo at a time.

Artificial Intelligence, Deep Learning, and Machine Learning

To get accurate answers to key questions in large virtualized environments, IT teams need an artificial intelligence -based analytics solution. They need a solution capable of simultaneously considering all of the data arising from across the IT infrastructure silos and applications. In virtual environments, components share IT resources and interact with one another in subtle ways. You need a solution that understands these interactions and the changing patterns of their behavior over time. It should understand how it changes through a business week and as seasonal changes occur over the course of a year. Most importantly, IT needs AI-driven solutions that do the work for IT. It should identify root causes of issues, recommend solutions, predict future problems, and forecast future capacity needs.

Save

Filed Under: Blog posts Tagged With: #AI, Artificial Intelligence, Machine Learning, VMware

Recent Posts

  • Application Intelligence in Relation to High Availability
  • Transitioning from VMware to Nutanix
  • Are my servers disposable? How High Availability software fits in cloud best practices
  • Data Recovery Strategies for a Disaster-Prone World
  • DataKeeper and Baseball: A Strategic Take on Disaster Recovery

Most Popular Posts

Maximise replication performance for Linux Clustering with Fusion-io
Failover Clustering with VMware High Availability
create A 2-Node MySQL Cluster Without Shared Storage
create A 2-Node MySQL Cluster Without Shared Storage
SAP for High Availability Solutions For Linux
Bandwidth To Support Real-Time Replication
The Availability Equation – High Availability Solutions.jpg
Choosing Platforms To Replicate Data - Host-Based Or Storage-Based?
Guide To Connect To An iSCSI Target Using Open-iSCSI Initiator Software
Best Practices to Eliminate SPoF In Cluster Architecture
Step-By-Step How To Configure A Linux Failover Cluster In Microsoft Azure IaaS Without Shared Storage azure sanless
Take Action Before SQL Server 20082008 R2 Support Expires
How To Cluster MaxDB On Windows In The Cloud

Join Our Mailing List

Copyright © 2025 · Enterprise Pro Theme on Genesis Framework · WordPress · Log in