SIOS SANless clusters

SIOS SANless clusters High-availability Machine Learning monitoring

  • Home
  • Products
    • SIOS DataKeeper for Windows
    • SIOS Protection Suite for Linux
  • News and Events
  • Clustering Simplified
  • Success Stories
  • Contact Us
  • English
  • 中文 (中国)
  • 中文 (台灣)
  • 한국어
  • Bahasa Indonesia
  • ไทย

Cloud Witness To Build Multi-Instance SQL Server Failover Cluster In Azure

September 10, 2018 by Jason Aw Leave a Comment

New Azure ILB Feature Allows You To Build A Multi-Instance SQL Server Failover Cluster In Azure

New Azure ILB Feature Allows You To Build A Multi-Instance SQL Server Failover Cluster In Azure

The new feature, Cloud Witness is my favourite at the moment. Before we look at the new quorum features in Windows Server 2016, I think it is important to know where we came from. In my previous post Understanding the Windows Server Failover Cluster Quorum in Windows Server 2012 R2 I went into some great detail regarding the history and evolution of the cluster quorum. I suggest you review that post to understand how the quorum works in Windows Server 2012 R2. Also, how the new features of Windows Server 2016 are going to make your cluster deployments even more resilient.

Cloud Witness

A Cloud Witness allows you to leverage Azure Blob Storage to act as a witness for your cluster. This witness would be in place of a Disk Witness or File Share Witness. The configuration of a Cloud Witness is extremely easy. From my experience costs next to nothing to host in Azure. The only downside is that the cluster nodes will need to be able to communicate over the internet to with your Azure Blob Storage. Very often cluster nodes are forbidden to communicate over to the public internet. So you will need to coordinate with your security team if you want to enable a Cloud Witness.

There are many compelling reasons for using a Cloud Witness to build the Multi-Instance SQL Server Failover Cluster In Azure. But for me it makes most sense in three very specific environments: Failover Cluster in Azure, Branch Office Clusters, and Multisite Clusters.

On A Closer Look

Let’s take a look at each of these scenarios to see how a Cloud Witness can help.

New ILB Feature For Multi-Instance SQL Server Failover Cluster In Azure
Figure 1 – When you’re trying to build Multi-Instance SQL Server Failover Cluster In Azure, the cloud witness storage account should always be configured Locally Redundant Storage (LRS)

Highly Available Deployments

If you are moving to Azure (or really any cloud provider), you will want to make sure your deployments are highly available. If you are taking about SQL Server, File Servers, SAP or other workloads traditionally clustered with Windows Server Failover Clustering, you will need to use either a File Share Witness or a Cloud Witness, since a Disk Witness is not possible in Azure. With Windows Server 2012 R2 or Windows Server 2008 R2, you will need to use a File Share Witness. Windows Server 2016 makes it possible to use a Cloud Witness. The advantage of a Cloud Witness is that you don’t have to maintain another Windows instance in Azure to host the File Share. Instead, Microsoft allows you to leverage Blob Storage.  This gives you a less expensive solution, one that is much easier to manage, and more resilient.

Location

When looking at cluster deployments in branch offices, cost and maintenance is always a consideration. For a retail chain with hundreds or thousands of locations, having a SAN in each location can be cost prohibitive. Each location might to run a two node Hyper-V cluster on a S2D Hyper-converged configuration or a 3rd party replication solution to host a number of virtual machines. Now what a Cloud Witness can do is to help the business avoid the cost of adding an additional physical server in each location to act as a File Share Witness or the cost of adding a SAN to each location.

Eliminates The Need For A 3rd Data Center

And finally, when deploying a multisite cluster, the Cloud Witness eliminates the need for a 3rd data center to host the File Share Witness. Before the introduction of the Cloud Witness, best practice would dictate that the File Share Witness reside in a 3rd location. Access to a 3rd datacenter just to host a file share witness was not always feasibly and certainly introduced another layer of complexity. By using a Cloud Witness you eliminate the need to maintain a 3rd location and access to the witness is done over the public internet, minimizing the network requirements as well.

Site Awareness

When building a multisite cluster, there has always been another common problem. Controlling the failover to always prefer the local site was not possible. While you could specify Preferred Owners, the Preferred Owners setting is commonly misunderstood. Administrators may not have realized this. But do you know even if they didn’t list a server as Preferred Owner, the server is automatically appended to the end of the Preferred Owners list maintained by the cluster. The result of this misunderstanding is that although you may have only listed the local servers as Preferred Owners, you could potentially have a cluster resource failover to the DR site. And this is even when there is a perfectly good node available in the local site. Obviously this is not what you expect and using Site Awareness will eliminate this problem moving forward.

Site Awareness fixes this problem by always preferring the local site when deciding which node to bring online. So in a normal circumstance a clustered workload will always failover to a local node unless you have a complete site outage. In which case one of the DR nodes will come online. The same holds true once you are running in the DR site. The cluster will recover the workload on a server in the DR site if it was previously running on a node in the DR site. Site Awareness will always prefer a local node.

Fault Domains

Building upon site awareness is Fault Domains. Fault Domains goes a step further and lets you define Node, Chasse, and Rack locations in addition to Site. Fault Domains have three benefits: Storage Affinity in a Stretch Cluster, increases Storage Spaces resiliency. It enhances the Health Services alerts by including meta data about the location of the associated resources raising the alarm. Storage Affinity will help ensure that your cluster workloads and storage are running in the same location. You certainly wouldn’t want your VM reading and writing data that is sitting on a CSV in a different city.

However, I think the biggest winner here is the Storage Spaces Direct (S2D) scenario. SD2 will leverage the information you provide about your cluster nodes location (Site, Rack, Chassis) to ensure that the multiple copies of data that is written for redundancy all live in different Fault Domains. This helps ensure that data placement is optimized so that the failure of a single Node, Chassis, Rack or Site does not bring down your entire S2D deployment.  Cosmos Darwin has an excellent video on Channel 9 that explains this concept in great detail.

Summary

Windows Server 2016 adds several new enhancements to the cluster quorum that will provide some immediate benefits to your cluster deployments. In addition, check out some of the other great new cluster enhancements like rolling system upgrade, Virtual Machine Resiliency, Workgroup and Multi-Domain Clusters and others.

To read about other tips such as building a new Multi-Instance SQL Server Failover Cluster In Azure with Cloud Witness, have a read at our posts.

Reproduced with permission from Clusteringformeremortals.com

Filed Under: Clustering Simplified Tagged With: Azure, Azure Resource Manager, Cloud Witness, cluster, Deployment, failover cluster, High Availability, Load Balance, multi instance sql server failover cluster in azure, PowerShell, replication, SQL Server, System Center Configuration Manager, Windows Server 2008, Windows Server 2012

Step-By-Step: Configuring A 2-Node Multi-Site Cluster On Windows Server 2008 R2 – Part 3

January 22, 2018 by Jason Aw Leave a Comment

In Part 1 of this series, I showed you how to prepare your multi-site cluster, including setting up the Node and File Share Majority Quorum. In Part 2, we saw a video example of how to integrate SteelEye DataKeeper, one of the available cluster replication solutions, with failover clustering to configure a multi-site Hyper-V failover cluster. In Part 3, we will examine how Microsoft SQL Server 2008 can be configured in a multi-site cluster with Windows Server 2008 Failover Clustering and SteelEye DataKeeper Cluster Edition.

First, why would you want to deploy a multi-site SQL server cluster? SQL Server comes with a variety of high availability options, including log shipping, replication (transactional, merge, snapshot), database mirroring and failover clusters. There is a great article that talks about the High Availability options in SQL Server 2008, so I won’t re-invent the wheel here. If you want to learn more about all of the options, have a look at this article by Ross Mistry, High Availability Options in SQL Server 2008.

If you read the article, Ross’ summary makes the following statement…

“Clearly, failover clustering is the best choice to reduce system downtime and provide higher application availability for the whole instance of SQL Server within a site; however, a failover cluster does not protect against disk failure and requires a SAN.”

What if you could have all of the benefits that Ross outlines and also protect against disk failure and eliminate the need for a SAN? Well, the good news is that is exactly what you can do by implementing a Microsoft SQL Server 2008 multi-site cluster on Windows Server 2008. SQL Server 2008 multi-site cluster may be a little bit of a misnomer. It does not necessarily need to be deployed across geographically dispersed locations. The servers could be located in the same rack, same room, same building or across continents; it really doesn’t matter. The important thing is that you are eliminating your storage as a single point of failure and if you choose to locate your cluster nodes in different physical locations then you also have built in site resiliency.

One of the most common questions and points of confusion about SQL Server 2008 and Windows Server 2008 failover clustering is support for failing across subnets. Yes, Windows Server 2008 Failover Clustering does support failing between subnets for most applications, however, SQL Server 2008 is not one of those applications. As far as I know, SQL Server 2008 R2 will also not support failing between subnets when it is released. My understanding is that the SQL team is working on support for cross-subnet failover, but it will be supported sometime after SQL Server 2008 R2 is released. So, for the time being, you will have to span your subnet if you wish to separate your nodes geographically.

Now that you have determined to deploy a multi-node SQL server cluster, here are the steps you will need to follow.

CONFIGURE YOUR BASIC CLUSTER

Follow the steps in Part 1 of this series to configure a basic 2-node cluster with a Node and File Share Majority Quorum.

CONFIGURE YOUR REPLICATION

Deploying a multi-site cluster will require that you work very closely with your replication vendor during this part of the configuration. Each vendor will have very specific instructions on how to set up the replication and create the storage resources to be used in your cluster. For the purposes of this demonstration, I will use SteelEye DataKeeper Cluster Edition to replicate the E drive from the server named PRIMARY to the server named SECONDARY. The E drive on PRIMARY and SECONDARY are just local attached volumes and not part of any SAN. As long as the E drive shows up as a local attached disk, DataKeeper can replicate it from one server to another. You can mix and match SAS, iSCSI, SAN, VHD, or any other storage type as DataKeeper is storage agnostic.

After you have configured your basic cluster as described in Part 1 of my series, run the DataKeeper setup.exe to install SteelEye DataKeeper Cluster Edition on both nodes of the cluster. You will be prompted to enter your license key at the end of the install. Enter your license and reboot your servers when prompted. You are now ready to create your mirror. Launch the DataKeeper GUI and follow the instructions below to create your mirror.

Click on “Connect to Server”.

Figure 1 – Connect to your source and target servers
Figure 1 – Connect to your source and target servers

Enter the name of the first server. Click Connect.

Enter the name of the second server, click Connect

Now click Create Job. That will launch the Create Job wizard.

Figure 2 – Create your Job
Figure 2 – Create your Job

Give your job a name and description. These can be anything you like.

Figure 3 – Give your Job a name and description
Figure 3 – Give your Job a name and description

Choose the following:

  • Source Server – where the data will be replicated from
  • Network adapter – the network where the replication traffic will travel
  • Volume – the volume you want to replicate

Click Next to continue.

Figure 4 – Choose you source server and network to use for replication
Figure 4 – Choose you source server and network to use for replication

Choose the following:

  • Target Server – where the data will be replicated to
  • Network adapter – the network where the replication traffic will travel
  • Volume – the volume you want to replicate

Click Next to continue.

Figure 5 – Choose your target server
Figure 5 – Choose your target server

Choose the following:

  • Compression Level – If you have a 100 Mbps or faster network for replication, leave it set to none. If you have a WAN that is less that 100 Mbps, you may benefit from enabling compression. Settings somewhere in the middle tend to give you the best performance of compression vs. CPU overhead associated with enabling compression.
  • Asynchronous vs. Synchronous – Asynchronous replication is generally acceptable in most environments and is definitely required in high-latency WAN environments. I wrote a whole blog post on this topic, so if you have any questions, check out my article on Asynchronous vs. Synchronous replication.
  • Maximum bandwidth – you can think of this as a “poor man’s” QOS. If you want to ensure that replication never exceeds a certain threshold of your WAN capacity, you can put a limiter on the amount of bandwidth it can consume. Unless you have a good reason to set it, it is better off leaving it set to 0.

Click Done to create your mirror.

Figure 6 – Choose your mirror settings
Figure 6 – Choose your mirror settings

Now if you take a look at your DataKeeper GUI, it will look similar to the following.

Figure 7 – Your mirror is now created
Figure 7 – Your mirror is now created

Once you have created your mirror, you need to make your mirror available in the Microsoft Cluster “Available Storage”. There are a few ways to do this, but the most straight forward way is to use the Windows PowerShell CLI. Below is an example that shows how to take the existing mirror we just created on the E drive and add it to the cluster “Available Storage”, move it to the PRIMARY node and bring it in-service

Import-Module FailoverClusters

Add-ClusterResource -Name “DataKeeper Volume E” -ResourceType “DataKeeper Volume” -Group “Available Storage”

Get-ClusterResource “DataKeeper Volume E” | Set-ClusterParameter VolumeLetter E

Move-ClusterGroup “Available Storage” -Node primary

Start-ClusterResource “DataKeeper Volume E”

For more information on PowerShell and the available commands for use with Failover Clustering, check out this great blog post from Symon Perriman of the Microsoft Failover Clustering Team.

http://blogs.msdn.com/clustering/archive/2008/12/20/9243367.aspx

You are now going to repeat the above steps to add any additional mirrors that you will use in your cluster. In our case, we are going to create a mirror of the F drive and use it to cluster the MSDTC. After you have added your additional mirrors and added them to Available Storage, your DataKeeper GUI should look something like this.

Figure 8 – After adding the second Job for the MSDTC resource
Figure 8 – After adding the second Job for the MSDTC resource

And your Failover Cluster Manager GUI should look like this.

Figure 9 – After adding the second DataKeeper resource
Figure 9 – After adding the second DataKeeper resource

CLUSTERING MSDTC

IMPORTANT NOTE – There is a hotfix that is required in order to support DTC with 3rd party disk resources.  Please see the following KB article and apply the howfix to all cluster nodes.  http://support.microsoft.com/kb/978476

SQL 2008 is very dependent upon MSDTC, so it is highly recommended that you cluster the MSDTC resource before you cluster your SQL resource. The following articles are provided for your reference for configuration and management of your MSDTC resource.

http://technet.microsoft.com/en-us/library/cc770748(WS.10).aspx

http://technet.microsoft.com/en-us/library/cc771540(WS.10).aspx

You will start by opening the Failover Cluster Manager GUI and then choose “Configure a Service or Application”.

Figure 10 – Creating a MSDTC resource
Figure 10 – Creating a MSDTC resource

You will then choose “Distributed Transaction Coordinator” and click Next

Figure 11 – Choose your Service or Application
Figure 11 – Choose your Service or Application

Give the MSDTC resource a name and unique IP address. These should be unique to MSDTC and not the same as you will use later when you create your SQL resource.

Figure 12 – Choose a name and IP address
Figure 12 – Choose a name and IP address

Choose the volume where you will store the data for the MSDTC resource. In our case we are choosing the replicated F drive.

Figure 13 – Choose a dedicated volume for the MSDTC resource
Figure 13 – Choose a dedicated volume for the MSDTC resource

Confirm your information and click Next to continue.

Figure 14 – Click Next to configure the DTC resource
Figure 14 – Click Next to configure the DTC resource

Congratulations, you have successfully configured the DTC resource. Click Finish.

Figure 15 – A successfully configured DTC resource
Figure 15 – A successfully configured DTC resource

We are just about ready to begin the installation of the first node of the SQL Server Cluster, however, there is one thing we need to do in preparation – Slip Stream SQL 2008 SP1 onto the SQL Server 2008 RTM install media.

SLIP STREAM SQL SP1 ONTO YOUR SQL 2008 INSTALL MEDIA

What I have discovered is that SQL Server 2008 will not install on Windows Server 2008 R2 without first slipstreaming SQL Server 2008 SP1 onto your SQL 2008 install media. Here is a great article that describes how to slipstream SQL Server 2008 RTM and Service Pack 1. After I read that article and successfully slipstream SP1 onto SQL 2008 RTM, I found the following Microsoft KB article that describes the same procedure. You may get an error that looks like the following if you try to install SQL without first slipstreaming SP1 onto the media.

There was an error setting private property ‘RequireKerberos’ to value ‘1’

I followed the instructions detailed in the first article and copied my SQL 2008 with SP1 install to the C:\ drive of both nodes in my cluster. In the instructions below, I will do the installation from the local disk of each cluster node.

INSTALLING YOUR FIRST CLUSTER NODE

Now that you have your SQL Server 2008 SP1 installation media ready to go, you are ready to install your first SQL node. There is one major “gotcha” when it comes to installing SQL on a multi-node cluster. In order for you to install SQL on a multi-node cluster, you must first pass the Windows Server 2008 Failover Cluster validate process. Unfortunately, a multi-site cluster is exempt from passing the storage related test, so you never are able to actually “pass” the validation as far as SQL is concerned. It took a little investigation on my part, but what I have come to find is that there is a command line parameter that allows you to skip the validation test on the SQL 2008 installation. Here is the command line.

Setup /SkipRules=Cluster_VerifyForErrors /Action=InstallFailoverCluster

To launch the SQL setup, open a Command window, browse to your SQL 2008 with SP1 install directory and type the command as shown below.

If everything goes as planned, you should see the screen below. Click OK to continue.

Enter your product key and click Next

Figure 17 – Enter your product key
Figure 17 – Enter your product key

Accept the license agreement and click Next

Click Install to install the Setup Support Files

At the end of the Setup for the Support Files you will receive a warning. Click on Show details and you will see the message below. You can click Next, ignoring this message since it is expected in a multi-site or non-shared storage cluster.

Figure 18 – The warning is expected in a multi-site or non-shared storage cluster
Figure 18 – The warning is expected in a multi-site or non-shared storage cluster

Choose the features you would like to install and click Next. Leave the “Shared Feature” directory set to the C drive as the SQL binaries should not be installed on the replicated volume.

Figure 19 – Choose your features
Figure 19 – Choose your features

On the next screen, you will choose a network name for your SQL Server. This will be the name that all of the clients will connect to. Assuming this is the default instance, leave the Instance ID and Instance root directory set to the defaults. Do not move the instance root directory to the replicated volume.

Figure 20 – Choose your SQL Network Name
Figure 20 – Choose your SQL Network Name

It is recommended that you have separate domain accounts for SQLServer and SQLAgent. You can take the time to create these accounts now if you have not already done so. These accounts require no special permissions, as this install process will give them the permissions that they require.

Confirm you have enough disk space and click Next to continue.

Choose the default settings to allow a new cluster resource group named “SQL Server (MSSQLSERVER)” to be created.

Figure 21 – Allow the wizard to create a new cluster resource group for you
Figure 21 – Allow the wizard to create a new cluster resource group for you

Choose a replicated volume that is still available, in our case the E:\ drive. Click Next to continue.

Figure 22 – Choose your replicated volume
Figure 22 – Choose your replicated volume

Now you will choose the IP address you want associated with the SQL cluster resource. You could leave it set to use DHCP if you wish.

Figure 23 – Choose your SQL cluster IP address
Figure 23 – Choose your SQL cluster IP address

Choose your security settings and click Next

Add any SQL Server administrators and choose your authentication mode and then click Next

Choose your Error and Usage Reporting options and click Next

You will once again see some warnings related to the validation process. You can ignore those messages as they are to be expected in a multi-site SQL Server cluster.

Click Install to begin the installation process

If everything installs as expected, you should see the following screens. Click Next then Close to finish the installation.

Congratulations, you have successfully installed the first node of your multi-site SQL Server Cluster. Now we will install the second node of the cluster.

INSTALL THE SECOND CLUSTER NODE

Installing the second cluster node is similar to installing the first node. We need to run SQL Setup once again from the command line so that we can skip the Validate process. So, from the 2nd node, open up your command prompt and run the following command.

  1. Install SQL 2008 SP1 (merged setup) on the 2nd node using the following command:

    Setup /SkipRules=Cluster_VerifyForErrors /Action=AddNode /INSTANCENAME=”MSSQLSERVER”

*Note: This assumes you installed the default instance on the 1st node

That will launch the install wizard as shown below. Click OK to continue.

Enter your product key and click next.

Accept the license terms and click Next

Click install to install the Setup Support files.

You can once again ignore the warning that some cluster validation tests have been skipped. This is to be expected in a multi-site cluster and non-shared storage clusters.

Verify you are adding the node to the right instance and click Next.

Add the passwords to the service accounts and click Next

Choose your Error and Usage Reporting options and click Next

Once again, ignore the warning about the skipped operations.

Click Install to begin the installation process.

If everything goes as expected, you should see the following screen.

Now that you have a fully functional two node cluster, you probably should testing things out by doing some manual switchovers. Right click on the resource and choose “Move to node SECONDARY”.

If everything is configured properly, your Failover Cluster GUI should look as follows.

CONCLUSION

I believe that SQL clusters with replicated storage make a lot of sense. Storage has always been a single point of failure of traditional clusters. You can eliminate that single point of failure by deploying a SQL Server cluster with replicated storage from SteelEye or any other Microsoft Multi-Site Cluster replication partner. I hope you found this article informative. If you have any questions or suggestions, please add your comments!

Reproduced with permission from https://clusteringformeremortals.com/2009/10/07/step-by-step-configuring-a-2-node-multi-site-cluster-on-windows-server-2008-r2-%E2%80%93-part-3/

Filed Under: Clustering Simplified, Datakeeper Tagged With: cluster, DataKeeper Cluster Edition, Microsoft Multi-Site Cluster, SQL Server, SteelEye, storage, Windows Server 2008

Recent Posts

  • Transitioning from VMware to Nutanix
  • Are my servers disposable? How High Availability software fits in cloud best practices
  • Data Recovery Strategies for a Disaster-Prone World
  • DataKeeper and Baseball: A Strategic Take on Disaster Recovery
  • Budgeting for SQL Server Downtime Risk

Most Popular Posts

Maximise replication performance for Linux Clustering with Fusion-io
Failover Clustering with VMware High Availability
create A 2-Node MySQL Cluster Without Shared Storage
create A 2-Node MySQL Cluster Without Shared Storage
SAP for High Availability Solutions For Linux
Bandwidth To Support Real-Time Replication
The Availability Equation – High Availability Solutions.jpg
Choosing Platforms To Replicate Data - Host-Based Or Storage-Based?
Guide To Connect To An iSCSI Target Using Open-iSCSI Initiator Software
Best Practices to Eliminate SPoF In Cluster Architecture
Step-By-Step How To Configure A Linux Failover Cluster In Microsoft Azure IaaS Without Shared Storage azure sanless
Take Action Before SQL Server 20082008 R2 Support Expires
How To Cluster MaxDB On Windows In The Cloud

Join Our Mailing List

Copyright © 2025 · Enterprise Pro Theme on Genesis Framework · WordPress · Log in